Microtonal, just intonation, electronic music software Microtonal, just intonation, electronic music software

Encyclopedia of Microtonal Music Theory

@ 00 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Login   |  Encyclopedia Index

harmonic distance

[John Chalmers, Divisions of the Tetrachord]

For a ratio a/b, the logarithm of a*b. It is a measure of harmonic complexity developed by James Tenney.

This distance function is a special use of the Minkowski metric in a tonal space where the units along each of the axes are the logarithms of prime numbers.

[For example], the harmonic distance of the interval 7:9 is 2*log(3)+log(7).

. . . . . . . . .
[Paul Erlich, Yahoo tuning group message 9627 (Wed Apr 19, 2000 12:09 pm)]

I wonder why, in this definition, Chalmers refers to the city-block metric as the "Minkowski metric". The only definitions of the Minkowski metric I've ever seen are:

the usual special relativistic space-time distance -- see:

and a generalized Euclidean metric where the exponents 2 and 1/2 are replaced with p and 1/p respectively (p can be infinite, in which case one takes a limit):

So what Chalmers really means is, using the second definition, the Minkowski first-order metric. Subject to Chalmers' approval, I suggest we change that definition.

It also might help to give an example using a ratio with one even number, to emphasize that one doesn't ignore factors of 2 in this computation.

. . . . . . . . .
[John Chalmers (reply), Yahoo tuning group message 9646 (Thu Apr 20, 2000 7:46 am)]

Go ahead and clarify the definition of city-block, aka Taxicab, aka Manhattan, aka Minkowski metric.

. . . . . . . . .
[Joe Monzo]

For the set of prime-factors p1, p2, ... pn having associated exponents e1, e2, ... en , the log(2) Tenney harmonic-distance is calculated as: (ABS(e1)*[LOG(p1)*(1/LOG(2))]) + (ABS(e2)*[LOG(p2)*(1/LOG(2))]) + ...

Below is a table of the log(2) harmonic-distance for some intervals in the 11-limit, ranked in ascending order of harmonic-distance.

 2,3,5,7,11-monzo         ratio         ~cents         Tenney HD

[  1  0,  0  0  0 >       2 / 1        1200            1.0
[ -1  1,  0  0  0 >       3 / 2         701.9550009    2.584962501
[  2 -1,  0  0  0 >       4 / 3         498.0449991    3.584962501
[  0 -1,  1  0  0 >       5 / 3         884.358713     3.906890596
[ -2  0,  1  0  0 >       5 / 4         386.3137139    4.321928095
[ -2  0,  0  1  0 >       7 / 4         968.8259065    4.807354922
[  1  1, -1  0  0 >       6 / 5         315.641287     4.906890596
[  0  0, -1  1  0 >       7 / 5         582.5121926    5.129283017
[  3  0, -1  0  0 >       8 / 5         813.6862861    5.321928095
[ -1 -1,  0  1  0 >       7 / 6         266.8709056    5.392317423
[  0  2, -1  0  0 >       9 / 5        1017.596288     5.491853096
[  3  0,  0 -1  0 >       8 / 7         231.1740935    5.807354922
[  0  2,  0 -1  0 >       9 / 7         435.0840953    5.977279923
[ -1 -1,  0  0  1 >      11 / 6        1049.362941     6.044394119
[  1  0,  1 -1  0 >      10 / 7         617.4878074    6.129283017
[ -3  2,  0  0  0 >       9 / 8         203.9100017    6.169925001
[  0  0,  0 -1  1 >      11 / 7         782.4920359    6.266786541
[  2  1,  0 -1  0 >      12 / 7         933.1290944    6.392317423
[ -3  0,  0  0  1 >      11 / 8         551.3179424    6.459431619
[  1 -2,  1  0  0 >      10 / 9         182.4037121    6.491853096
[  0 -2,  0  0  1 >      11 / 9         347.4079406    6.62935662
[ -1  0, -1  0  1 >      11 / 10        165.0042285    6.781359714
[ -3  1,  1  0  0 >      15 / 8        1088.268715     6.906890596
[  1 -2,  0  1  0 >      14 / 9         764.9159047    6.977279923
[  2  1,  0  0 -1 >      12 / 11        150.6370585    7.044394119
[  4 -2,  0  0  0 >      16 / 9         996.0899983    7.169925001
[  1  0,  0  1 -1 >      14 / 11        417.5079641    7.266786541
[  0  1,  1  0 -1 >      15 / 11        536.9507724    7.366322214
[  4  0,  0  0 -1 >      16 / 11        648.6820576    7.459431619
[  1  2,  0  0 -1 >      18 / 11        852.5920594    7.62935662
[  2  0,  1  0 -1 >      20 / 11       1034.995772     7.781359714
[  4 -1, -1  0  0 >      16 / 15        111.7312853    7.906890596
[ -4  0,  2  0  0 >      25 / 16        772.6274277    8.64385619
[ -4  3,  0  0  0 >      27 / 16        905.8650026    8.754887502
[ -1 -2,  2  0  0 >      25 / 18        568.717426     8.813781191
[ -2  3, -1  0  0 >      27 / 20        519.5512887    9.076815597
[ -3 -1,  2  0  0 >      25 / 24         70.67242686   9.22881869
[  0  3, -2  0  0 >      27 / 25        133.2375749    9.398743692
[  5  0, -2  0  0 >      32 / 25        427.3725723    9.64385619
[  5 -3,  0  0  0 >      32 / 27        294.1349974    9.754887502
[  2  2, -2  0  0 >      36 / 25        631.282574     9.813781191
[  3 -3,  1  0  0 >      40 / 27        680.4487113   10.0768156
[  4  1, -2  0  0 >      48 / 25       1129.327573    10.22881869
[  1 -3,  2  0  0 >      50 / 27       1066.762425    10.39874369
[ -5  2,  1  0  0 >      45 / 32        590.2237156   10.4918531
[  6 -2, -1  0  0 >      64 / 45        609.7762844   11.4918531
[ -1  4, -2  0  0 >      81 / 50        835.1925757   11.98370619
[ -6  1,  2  0  0 >      75 / 64        274.5824286   12.22881869
[ -6  4,  0  0  0 >      81 / 64        407.8200035   12.33985
[ -4  4, -1  0  0 >      81 / 80         21.5062896   12.6617781
[  2 -4,  2  0  0 >     100 / 81        364.8074243   12.98370619
[  7 -1, -2  0  0 >     128 / 75        925.4175714   13.22881869
[  7 -4,  0  0  0 >     128 / 81        792.1799965   13.33985
[  5 -4,  1  0  0 >     160 / 81       1178.49371     13.6617781
[  7  0, -3  0  0 >     128 / 125        41.05885841  13.96578428
[ -7  3,  1  0  0 >     135 / 128        92.17871646  14.0768156
[ -7  2,  2  0  0 >     225 / 128       976.5374295   14.81378119
[ -7  5,  0  0  0 >     243 / 128      1109.775004    14.9248125
[  8 -3, -1  0  0 >     256 / 135      1107.821284    15.0768156
[ -5  5, -1  0  0 >     243 / 160       723.4612905   15.2467406
[  8 -2, -2  0  0 >     256 / 225       223.4625705   15.81378119
[  8 -5,  0  0  0 >     256 / 243        90.22499567  15.9248125
[  6 -5,  1  0  0 >     320 / 243       476.5387095   16.2467406
[ -8  4,  1  0  0 >     405 / 256       794.1337173   16.6617781
[  9 -4, -1  0  0 >     512 / 405       405.8662827   17.6617781
[ -9  3,  2  0  0 >     675 / 512       478.4924303   18.39874369
[ -9  6,  0  0  0 >     729 / 512       611.7300052   18.509775
[ -7  6, -1  0  0 >     729 / 640       225.4162913   18.8317031
[ 10 -3, -2  0  0 >    1024 / 675       721.5075697   19.39874369
[ 10 -6,  0  0  0 >    1024 / 729       588.2699948   19.509775
[  8 -6,  1  0  0 >    1280 / 729       974.5837087   19.8317031
[-10  5,  1  0  0 >    1215 / 1024      296.0887182   20.2467406
[-10  4,  2  0  0 >    2025 / 1024     1180.447431    20.98370619
[ 11 -5, -1  0  0 >    2048 / 1215      903.9112818   21.2467406
[ -8  7, -1  0  0 >    2187 / 1280      927.3712922   21.4166656
[ 11 -4, -2  0  0 >    2048 / 2025       19.55256881  21.98370619
[-11  7,  0  0  0 >    2187 / 2048      113.6850061   22.09473751
[  9 -7,  1  0  0 >    2560 / 2187      272.6287078   22.4166656
[-11  6,  1  0  0 >    3645 / 2048      998.0437191   22.8317031
[ 12 -7,  0  0  0 >    4096 / 2187     1086.314994    23.09473751
[ 12 -6, -1  0  0 >    4096 / 3645      201.9562809   23.8317031
[-12  8,  0  0  0 >    6561 / 4096      815.6400069   24.67970001
[-10  8, -1  0  0 >    6561 / 5120      429.3262931   25.0016281
[ 13 -8,  0  0  0 >    8192 / 6561      384.3599931   25.67970001
[ 11 -8,  1  0  0 >   10240 / 6561      770.6737069   26.0016281
[-13  7,  1  0  0 >   10935 / 8192      499.9987199   26.4166656
[ 14 -7, -1  0  0 >   16384 / 10935     700.0012801   27.4166656
[-14  9,  0  0  0 >   19683 / 16384     317.5950078   28.26466251
[-15  8,  1  0  0 >   32805 / 32768       1.9537208   30.0016281
[-15 10,  0  0  0 >   59049 / 32768    1019.550009    30.84962501
[ 16 -8, -1  0  0 >   65536 / 32805    1198.046279    31.0016281
[-17 11,  0  0  0 >  177147 / 131072    521.5050095   34.43458751
[-19 12,  0  0  0 >  531441 / 524288     23.46001038  38.01955001

		

Below is a 2-dimensional lattice showing the log(2) harmonic-distance of some 5-limit ratios. Shades of grey represent 5-unit ranges of harmonic-distance thus:

 0 -  5   white
 5 - 10   lightest grey
10 - 15   medium-light grey
15 - 20   medium-dark grey
20 - 25   darkest grey
		
harmonic distance: 5-limit greyscale lattice diagram
. . . . . . . . .
[GIVE-SECONDARY-CREDIT-HERE]
. . . . . . . . .

The tonalsoft.com website is almost entirely the work of one person: me, Joe Monzo. Please reward me for my knowledge and effort by choosing your preferred level of financial support. Thank you.

support level