schismic
[Joe Monzo]
A qualifier used to describe temperaments which are based on the distribution of the schisma. For a detailed explanation, see Graham Breed's "Schismic Temperaments" page.
Pythagorean tuning can be considered one instance of a schismic temperament.
The standard 12-edo tuning is unique in that it is both a schismic (-1 schisma) and a meantone (-1/11-comma) temperament, meaning that it equates 5:4 [== 51] with both 81:64 [== 34] and 8192:6561 [== 3-8].
Some other well-known schismic temperaments are those of Helmholtz, Groven, and the "dinarra" tuning of Eduard Sabat-Garibaldi.
Not to be confused with schismic tuning, which see.
. . . . . . . . .
family name
|
schismic
|
period
|
octave
|
generator
|
fourth or fifth
|
5-limit
name
|
schismic
|
comma
|
32805/32768
|
mapping
|
[<1 2 1|, <0 -1 8|]
|
poptimal generator
|
120/289
|
MOS
|
12, 17, 29, 41, 53, 65, 118, 171
|
7-limit
name
|
schismic, pontiac, 118&171
|
wedgie
|
<<1 -8 39 -15 59 113||
|
mapping
|
[<1 2 -1 19|, <0 -1 8 -39|]
|
7&9 limit copoptimal generator
|
732/1763
|
TM basis
|
{4375/4374, 32805/32768}
|
MOS
|
12, 17, 29, 41, 53, 65, 118, 171
|
name
|
garibaldi, 41&53
|
wedgie
|
<<1 -8 -14 -15 -25 -10||
|
mapping
|
[<1 2 -1 -3|, <0 -1 8 14|]
|
7&9 limit copoptimal generator
|
39/94
|
TOP period (cents):
|
1200.760624 TOP generator: 498.119330
|
TOP generator (cents):
|
498.119330
|
TM basis
|
{225/224, 3125/3087}
|
MOS
|
12, 17, 29, 41, 53, 94
|
name
|
schism, 12&17
|
wedgie
|
<<1 -8 -2 -15 -6 18||
|
mapping
|
[<1 2 -1 2|, <0 -1 8 2|]
|
7 limit poptimal generator
|
27/65
|
9 limit poptimal generator
|
22/53
|
TM basis
|
{64/63, 360/343}
|
MOS
|
12, 17, 29, 41, 53
|
name
|
grackle, 65&77
|
wedgie
|
<<1 -8 -26 -15 -44 -38||
|
mapping
|
[<1 2 -1 -8|, <0 -1 8 26|]
|
7 limit poptimal generator
|
170/409
|
9 limit poptimal generator
|
133/320
|
TM basis
|
{126/125, 32805/32768}
|
MOS
|
12, 17, 29, 41, 53, 65, 77, 89
|
11 limit
name
|
garibaldi, 41&53
|
wedgie
|
<<1 -8 -14 23 -15 -25 33 -10 81 113||
|
mapping
|
[<1 2 -1 -3 13|, <0 -1 8 14 -23|]
|
poptimal generator
|
95/229
|
TM basis
|
{225/224, 385/384, 2200/2187}
|
MOS
|
12, 17, 29, 41, 53, 94
|
name
|
garybald, 29&41
|
wedgie
|
<<1 -8 -14 -18 -15 -25 -32 -10 -14 -2||
|
mapping
|
[<1 2 -1 -3 -4|, <0 -1 8 14 18|]
|
poptimal generator
|
63/152
|
TM basis
|
{100/99, 225/224, 245/242}
|
MOS
|
12, 17, 29, 41, 70
|
. . . . . . . . .
[Joe Monzo]
The relationships of the schismic family are shown below on a family-tree, where the top generation is 5-limit and each succeeding generation is the next higher prime-limit:
(grandmother)
helmholtz
[32805/32768]
|
|
-----------------------------------------------------------------------------------------------
| | | |
| | | |
(?) (mother?) (illegitimate uncle?) (?)
pontiac garibaldi schism grackle
[32805/32768, 4375/4374] [225/224, 3125/3087] [64/63, 360/343] [32805/32768, 126/125]
|
|
----------------------------------
| |
| |
(daughter) (daughter)
garibaldi garybald
[225/224, 385/384, 2200/2187] [100/99, 225/224, 245/242]
. . . . . . . . .